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Abstract. Ground state of the two-dimensional hard-core-boson system in the presence of the quenched
random chemical potential is investigated by means of the exact-diagonalization method for the system
sizes up to L = 5. The criticality and the DC conductivity at the superfluid-localization transition have
been controversial so far. We estimate, with the finite-size scaling analysis, the correlation-length and the
dynamical critical exponents as ν = 2.3 ± 0.6 and z = 2, respectively. The AC conductivity is computed
with the Gagliano-Balseiro formula, with which the resolvent (dynamical response function) is expressed
in terms of the continued-fraction form consisting of Lanczos tri-diagonal elements. Thereby, we estimate
the universal DC conductivity as σc(ω → 0) = 0.135 ± 0.01((2e)2/h).

PACS. 75.10.Jm Quantized spin models – 75.10.Nr Spin-glass and other random models –
75.40.Mg Numerical simulation studies

1 Introduction

The scaling argument of Abrahams, Anderson, Liccia-
rdello and Ramakrishnan [1] states that in two dimensions,
infinitesimal amount of quenched randomness should drive
itinerant extended states to localize. That is, at the ab-
solute zero temperature, the conductivity should be van-
ishing, if there exist any randomnesses. These are, how-
ever, some exceptions where the above description fails.
For instance, the integer quantum hall effect is described
in terms of successive metal-insulator (delocalization-
localization) transitions of dirty two-dimensional electron
system with the external magnetic field varied. In the
above-mentioned scaling theory, the random perturbation
is appeared to be marginal so that some unexpected fac-
tors, namely, the magnetic field and the many-body inter-
action, would possibly change the scenario.

For instance, suppose that there exists an attractive
interaction among the electrons. At the ground state, the
electrons would be unstable against the bose condensation
so that the system would be in the superconducting phase.
The disorder-driven localization from the superconducting
phase is apparently out of the scope of the conventional
localization theory, and has been studied extensively so
far. In experiments, the transition is observed for metallic
films [2–5], high-Tc films [6] and Josephson-junction ar-
rays [7,8]. One of the main concerns is the conductivity
at the critical point: the experiments show that irrespec-
tive of the samples examined, the localization transition
occurs at a universal condition. Namely, at the transition,
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the electrical conductivity is found to be ≈ (2e)2/h (the
parameter e denotes the charge of a single electron, and h
denotes the Planck constant).

Localization transition of the absorbed helium by a
porous media [9,10] is considered [11,12] to belong pre-
cisely to the same universality class mentioned above.
(That is, the critical exponents are identical. The elec-
trical conductivity, however, does not make any sense for
the latter, because the helium atom is not charged.) The
equivalence is based on the belief that the Cooper pair is
formed already in the localization phase as well as in the
superconducting phase, and the essence of the transition
is concerned only in the boson degrees of freedom and the
site-random chemical potential. This picture was found to
be valid in one dimension [13].

From a theoretical viewpoint, the criticality itself is
a matter of interest. It is notable that the present phe-
nomenon occurs at the ground state. This criticality is
different essentially from that of the finite-temperature
transitions. In the path-integral picture for the partition
function, d-dimensional quantum system is regarded as a
(d+1)-dimensional classical system. The system-size along
the imaginal-time direction is given by the inverse tem-
perature, which is diverging at the ground state. Hence,
the critical fluctuation along the imaginary-time direction
contributes to the universality class significantly. This ex-
tra contribution is characterized by the dynamical critical
exponent z, which is explained in the next section in de-
tail.

The scaling argument [12,14] shows that the conduc-
tivity remains finite at the onset of the localization tran-
sition even at the ground state. Moreover, the argument
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for general dimensions yields the dynamical critical ex-
ponent being equal to the spatial dimension; z = d. We
explain the argument in Section 2.2. This prediction is
astonishing in the sense that there is no upper critical
dimension in this critical phenomenon. (The prediction
is confirmed rigorously for d = 1, where the bosoniza-
tion technique is available [13,15]. For numerical study of
the d = 1 criticality, see the article [16] and references
therein.) Because of the absence of the upper critical di-
mension, the ε-expansion scheme cannot be formulated.
Hence, for d = 2, numerical-simulation studies have been
playing a crucial role so far.

Runge [17] employed the exact-diagonalization method
to treat system sizes up to L = 4; the Hamiltonian is
given by equation (1) shown afterwards. (When treating
L = 5, he reduced the particle density to n = 0.2.) He
obtained the estimates ν = 1.4 ± 0.3, z = 1.95 ± 0.25
and σc = 0.17 ± 0.01((2e)2/h), and claimed that finite-
size correction prevents definite conclusion. Monte-Carlo
method has been used in many studies. Makivić, Trivedi
and Ullah [18] obtained the estimates ν = 2.2 ± 0.2,
z = 0.5 ± 0.05 and σc = 1.2 ± 0.2. Batrouni, Larson,
Scalettar, Tobochnik and Wang [19] obtained the esti-
mate σc = 0.45 ± 0.07. Wallin, Sørensen, Girvin and
Young [20] obtained ν = 0.9 ± 0.1, z = 2.0 ± 0.1 and
σc = 0.14± 0.03. Sørensen, Wallin, Girvin and Young [21]
obtained ν = 1.0± 0.1, z = 2.0± 0.1 and σ = 0.14± 0.03.
Zhang, Kawashima, Carlson and Gubernatis [22] obtained
ν = 0.9 ± 0.1 and z = 2.0 ± 0.4. The estimates are still
rather scattering. In particular, computing the conduc-
tivity more reliably would be of practical importance,
because it can be compared with the experimentally
observed value σc ≈ (2e)2/h mentioned above. The
Monte-Carlo method enables one to treat larger systems
than those with the exact-diagonalization method. rather
than In the quantum Monte-Carlo simulation, however,
because the dynamical critical exponent is predicted to
be z = 2, in order to simulate ground-state property, the
imaginary-time system size should be enlarged rapidly;
namely, it should be kept quadratic in terms of the real-
space system size at least.

In the present paper, we simulate the two-dimensional
bose system on the L × L square lattice under the peri-
odic boundary condition in the presence of the quenched
random chemical potential. The Hamiltonian is given by,

H = −
J

2

∑
〈ij〉

(
a†iaj + h.c.

)
+
∑
i

Hi(2a
†
iai − 1), (1)

where the operators {ai, a
†
i} obey the hard-core boson

statistics,

[ai, aj] = [a†i , a
†
j ] = [ai, a

†
j ] = 0 (i 6= j),

{ai, a
†
i} = 1 and aiai = a†ia

†
i = 0, (2)

and
∑
〈ij〉 denotes the summation over all nearest neigh-

bors. The site-random chemical potentials {Hi} distribute
uniformly over the range [−

√
3∆,
√

3∆]; namely, the mean

deviation is given by
√

[H2
i ]av = ∆. The particle density

n = N/L2 is fixed to be one half throughout this paper.
As is mentioned above, the model (1) is believed to

describe the physics of the superconductivity-localization
transition as well as the superfluid-localization transition.
This belief is based on the picture [11,12] that the bo-
son describes the Cooper pair, so that the boson charge
should be the twice of the single electron charge; e∗ = 2e.
The model (1) is investigated very extensively in the
above mentioned article [17]. Here, we attempt to im-
prove this work through utilizing some recent develop-
ments, the algorithm for computing the response func-
tion (resolvent) [23], the estimate scheme of the dynamical
critical exponent [24], and parallel supercomputers which
enable one to treat larger system (L = 5). These improve-
ments are described in respective subsections of Section 3.

The rest of the paper is organized as follows: in the
next section, we review some notions relevant to the
present study. First, we show the viewpoint from which
the model (1) is regarded as the quantum XY model [25].
Nature of the superfluid-localization transition is inter-
preted in the language of the quantum spin system. Then,
we summarize the scaling argument [12,14] describing
the criticality. The argument yields some scaling formu-
lae which are useful in analyzing our finite-size numeri-
cal data. In Section 3, our numerical simulation results
are presented. We estimated the critical exponents as
ν = 2.3± 0.6 and z = 2. At the critical point, we estimate
the conductivity as σc = 0.135±0.01((2e)2/h). These new
results are summarized in the last section in comparison
with previous results.

2 Review – Equivalence to the XY model
and scaling argument

In this section, we summarize several important aspects
about the model (1). First, we introduce the equivalence
between the model (1) and the quantum XY spin sys-
tem [25]. This equivalence reveals nature of both the su-
perfluid and the localization phases in the language of the
spin system, and provides intuitive picture of the phase
transition. Finally, we review the scaling argument [12,
14], whose formulae are used in the analyses of our nu-
merical data in Section 3.

2.1 Mapping to the quantum XY model
with the random magnetic field

Because the S = 1/2 ladder operators {S+
i , S

−
i } obey the

same algebra equations (2) [25], the Hamiltonian (1) is
expressed in terms of the spin operators,

H = −J
∑
〈ij〉

(Sxi S
x
j + Syi S

y
j ) + 2

∑
i

HiS
z
i . (3)

Now, perspectives developed for the quantum spin system
become available. Kishi and Kubo [26] showed rigorously
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that (without the random magnetic field) in the ther-
modynamic limit, the ground-state magnetism is sponta-
neously broken

〈m2
XY 〉 6= 0, (4)

where mXY = 1
L2

∑
i(S

x
i , S

y
i ). It is expected that for suf-

ficiently strong random fields, the long-range magnetism
would be disturbed, 〈m2

XY 〉 = 0. Hence, we see that a
phase transition between the XY and the random-field
phases would exist at a certain random-field strength.

What does the existence of the XY order (4) stand for
in the boson language? We show that it stands for the bose
condensation (superfluidity): if the number of the particles
condensing at the k = 0 state is of the system-size order,
the state is regarded as being of superfluid. That is, the
quantity,

|Ψsuper|
2 =

1

L2

〈 1

L

∑
j

eik·ja†j

 1

L

∑
j

e−ik·jaj

〉∣∣∣∣∣∣
k=0

,

(5)

works as an order parameter of the superfluidity. The or-
der parameter is expressed in term of the spin language,
|Ψsuper|2 = 〈m2

XY 〉. As is explained above, this remains
finite. And so, the superfluidity develops actually at the
ground state of the Hamiltonian (1) at ∆ = 0. It is quite
natural that the gauge degree of freedom, which is spon-
taneously broken in the superfluid phase, is related to the
in-plain spin rotator. As is introduced in Section 1, the
essence of the superfluid-localization transition is believed
to be concerned only in the in-plain rotator degrees of
freedom, and the site-random perturbations conjugate to
them.

2.2 Scaling argument

Here, we introduce a scaling argument [12,14] which de-
scribes the criticality of the superfluid-localization transi-
tion. The argument yields various useful formulae to an-
alyze numerical data. The argument itself, however, does
not yield any conclusions to estimate the critical expo-
nents quantitatively. Any analytical analyses to estimate
the critical exponents face a difficulty as is mentioned in
Introduction. For the purpose of estimating the exponents
quantitatively, numerical simulation has been playing a
crucial role.

The scaling hypothesis states that (the singular part
of) the free energy per unit volume for the system size
L and the inverse temperature β should be given in the
form,

f(L, β) ∼
1

ξdr ξτ
f̃

(
L

ξr
,
β

ξτ

)
, (6)

where ξr and ξτ denote the real-space correlation length
and the imaginary-time one, respectively. (Note that in
the path-integral viewpoint, the partition function of a
d-dimensional quantum system is regarded as that of a

(d + 1)-dimensional counterpart.) These are expressed in
term of the deviation from the critical point δ; ξr ∼ δ−ν

and ξτ ∼ ξzr . The parameter ν denotes the correlation-
length critical exponent, and z denotes the dynamical
critical exponent. These are estimated in Section 3, nu-
merically. In general, for quantum random systems, the
real-space correlation develops less robustly than the
imaginary-time one does. This anisotropy is one of the
significant characteristics of the random quantum critical
phenomena, resulting in various new exotic universality
classes. The anisotropy is characterized by the dynamical
critical exponent z.

The superfluid density ρs – the spin stiffness in the
language of the spin system – is defined as the elastic
constant in terms of the real-space gauge twist [27],

f ∼
ρs

2
(∂xθ)

2. (7)

Note that the quantity works as an order parameter of
the superfluidity. It is furthermore expressed in the form,

f ∼ ρs

2

(
Θ
L

)2
, where Θ denotes the total gauge twist. Using

the form (6), we obtain,

ρs ∼ fL
2 = ξ−(d+z−2)

r
˜̃
f

(
L

ξr
,
β

ξτ

)
= L−(d+z−2) ˜̃̃f

(
L

ξr
,
β

ξτ

)
· (8)

This scaling form is used in our numerical-data analysis.
The compressibility κ is defined, on the other hand, as
the elastic constant of the imaginary-time gauge twist,
f ∼ κ

2 (∂τθ)
2. Through the similar arguments as the above,

we obtain the scaling formula for the compressibility,

κ ∼ ξ−(d−z)
r

˜̃
f

(
L

ξr
,
β

ξτ

)
· (9)

Fisher, Weichman, Grinstein and Fisher predicted that
the formula,

z = d, (10)

should hold for any dimensions: the compressibility is fi-
nite in both phases beside the transition point. Hence, it
would be kept to be of the order unity even at the crit-
ical point as well, so that we obtain the equality (10).
In Section 3, we confirm their prediction with use of the
Rieger-Young method [24].

Finally, we explain how the above scaling argument
concludes that the conductivity would be finite at the crit-
ical point. The scaling argument [14] yields the following
formula for the AC conductivity,

σ(ω) ∼ ξ−(d+z−2)
r

˜̃ρs(ωξτ )/ω. (11)

Assuming d = 2, and the scaling function behaves as
˜̃ρs(x) ∝ x in the vicinity of the critical point x → ∞, we
see that the conductivity does not have any singularities at
the critical point, and therefore remains finite. To summa-
rize, the scaling argument states that there is a possibil-
ity that the conductivity remains finite at the superfluid-
localization critical point. The quantitative evaluation of
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Fig. 1. Square of the in-plain magnetization m2 is plotted
against the randomness ∆. The random-sample numbers are
2048, 2048, 2048 and 608 for L = 2, 3, 4 and 5, respectively.
The XY magnetic order becomes suppressed as the random
magnetic field is strengthened.

σc, however, lies out of the scope of the argument. Here,
we compute the conductivity with use of the Gagliano-
Balseiro method [23] in the next section.

3 Numerical results

In this section, we present our numerical results. In or-
der to diagonalize the Hamiltonian (1), we employed the
Lanczos method. We have fixed the particle density to
be one half n (= N/L2) = 0.5, and treated the system
sizes up to L = 5. For those system sizes of odd L, we
proceeded the sets of simulations for the particle num-
bers N = [L2/2] and [L2/2]− 1; the bracket [· · · ] denotes
the Gauss notation. The data for n = 0.5 are obtained
through interpolating these two sets of data with use of
the relation Q(n) = a(n− 0.5)2 + c; physics is symmetric
in terms of n = 0.5 (particle-hole symmetry).

3.1 Criticality of the superfluid-localization transition

Here, we determine the location of the superfluid-
localization transition point and the correlation-length
critical exponent. We use the language of the spin sys-
tem, which is explained in the Section 2.1. That is, from
this viewpoint, the transition is characterized by the dis-
appearance of the XY (in-plain) magnetic order.

In Figure 1, we plotted the square of the in-plane
magnetization m2 = [〈m2

XY 〉]av against the randomness,
where the bracket [· · · ]av denotes the random-sampling
average, and 〈· · · 〉 denotes the ground-state expectation
value. The random-sample numbers are 2048, 2048 2048
and 608 for L = 2, 3, 4 and 5, respectively. We see that the
in-plane magnetization becomes suppressed by the ran-
domness. In Figure 2, we plotted the Binder parameter

Fig. 2. Binder parameter (12) of the in-plain magnetization is
plotted against the randomness. The intersection point of the
curves indicates the location of the transition point.

[28] of the in-plane magnetic order,

U = 1−
[〈m4

XY 〉]av

3[〈m2
XY 〉

2]av
· (12)

The Binder parameter is invariant with respect to the sys-
tem sizes at the critical point. It is enhanced (suppressed)
in the order (disorder) region as the systems size is en-
larged. In Figure 2, We observe an intersection point at
∆ ≈ 1.2. Namely, in the region ∆ < 1.2, the superfluidity
persists against the random chemical potential, whereas
in ∆ > 1.2, the particles are localized, and the long-range
gauge coherence is lost.

In order to estimate the transition point and the
correlation-length exponent precisely, we analyze the
above data by means of the finite-size-scaling theory. Ac-
cording to the theory, the Binder parameter (dimension-

less quantity) obeys the form U = Ũ
(
(∆−∆c)L1/ν

)
in

the vicinity of the critical point ∆c. Namely, the data
(∆ − ∆c)L1/ν-U should collapse along a universal curve
irrespective of the system sizes. In other words, the crit-
ical point ∆c and the exponent ν are adjusted so that
the scaled data could form a universal curve. The de-
gree to what extent the data collapse is measured by the
Kawashima-Ito “local-linearity function” [29] which is ex-
plained in Appendix. In Figure 3, we show the scaling plot
for the data shown in Figure 2. In consequence, we obtain
the estimates ∆c = 1.25±0.1 and ν = 2.3±0.6. In order to
see whether the correction to the finite-size scaling exists,
we analyzed the data for L = 3, 4 and 5 similarly; omitted
the data for L = 2. This analysis yields the best-fit esti-
mates ∆c = 1.27 and ν = 2.3. Therefore, we conclude that
there is little correction to the finite-size scaling; in other
words, the system sizes treated here reach the scaling re-
gion. Our estimate ν = 2.3±0.6 is somewhat different from
that of reference [17] (ν = 1.4 ± 0.3) despite of the fact
that we considered the same model also using the exact-
diagonalization technique. This discrepancy may originate
in the criteria utilized to appreciate the scaling-data col-
lapse, and is discussed in the next section.
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Fig. 3. Scaling plot for the data shown in Figure 2. The scaling
analysis yields the best-fit estimates ∆c = 1.25 and ν = 2.0.

Fig. 4. Scaled spin stiffness L2ρs is plotted. Because the curves
intersect at a point, the prediction z = d is appeared to hold.

According to the formula (8), if we assume that the
dynamical critical exponent is equal to the spatial dimen-
sion, namely, z = d = 2, the scaled spin stiffness L2ρs

should be invariant at the critical point. The spin stiffness
is given by,

ρs =

[〈
∂2Eg(Θ)

∂Θ2

∣∣∣∣
Θ=0

〉]
av

, (13)

where the angle denotes the boundary gauge twist a†iaj →

eiΘa†iaj, and Eg denotes the ground-state energy. In
Figure 4, we plotted the scaled spin stiffness L2ρs. In fact,
we observe at ∆ ≈ 1.3, all the curves intersect. In conse-
quence, founded on the scaling formula (8), the so-called
“generalized Josephson relation”, we see that the dynam-
ical exponent would be equal to two. The same reasoning
founded on this relation has been reported in the litera-
tures [17,18,20,22]. In this paper, in Section 3.3, we es-
timate the dynamical critical exponent with use of the
Rieger-Young [24] method, which would be more straight-
forward.

3.2 Electrical conductivity

We evaluate the dynamical conductivity at the critical
point ∆c = 1.25 estimated in the above section. The DC
conductivity is conjectured to be universal at the critical
point as is explained in Introduction. The dynamical con-
ductivity is given by the current-current time correlation,

σ(ω) = Re

[
1

~ω
1

L2

∫ ∞
0

dteiωt〈[Jx(t), Jx]〉

]
av

, (14)

where the current is given by Jx = ie∗J
2~
∑
j,δx

δxa
†
j+δx

aj .

In the previous work [17], the conductivity is calculated
through Fourier-transforming the current-current correla-
tion numerically, whose time correlation is evaluated with
use of the Suzuki-Trotter-decomposition approximation.
We evaluate the resolvent form of equation (14) directly,

σ(ω) = Re

(
i

~ωL2

×

[〈
Jx

(
~

Eg −H + ~ω
+

~
Eg −H− ~ω

)
Jx

〉]
av

)
.

(15)

Now, we are free from the discrete numerical integration
error. (The conductivity is a linear combination of the
delta-function peaks as is apparent from Eq. (15), which
might be suffered significantly from the numerical dis-
cretization error.) Some might wonder that the inverse
matrix of the total Hamiltonian in equation (15) cannot
be computed; this is true. The expectation value of the in-
verse of the Hamiltonian is, however, evaluated with use
of the Gagliano-Balseiro continued-fraction formula [23],〈

f0

∣∣∣∣ 1

z −H

∣∣∣∣ f0

〉
=

〈f0|f0〉

z − α0 −
β2

1

z−α1−
β2
2

...

, (16)

where the coefficients are given by the Lanczos tri-
diagonal elements,

|fi+1〉 = H|fi〉 − αi|fi〉 − β
2
i |fi−1〉, (17)

αi = 〈fi|H|fi〉/〈fi|fi〉,

β2
i = 〈fi|fi〉/〈fi−1|fi−1〉 (β0 = 0).

We have evaluated the dynamical conductivity (15) by
means of this formula.

In Figure 5, we show the conductivity for a certain
random sample with ∆ = 1.25 and L = 5. We see that the
conductivity consists of delta-function peaks. The delta
function peak is broadened into the Lorentz form through
the substitution ω → ω − 0.2i. The concept of the dissi-
pation becomes subtle for finite-size system. For instance,
the DC conductivity is vanishing. This is due to the pres-
ence of the finite-size energy gap above the ground state.
Only in the thermodynamic limit, The conductivity in the
vicinity of the zero frequency ω = 0 would emerge. (In the
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Fig. 5. Electrical conductivity is evaluated for a random sam-
ple with ∆ = 1.25 and L = 5. We see that the conductivity
consists of delta-function peaks; the delta-function is broad-
ened into the Lorentz form with the width η = 0.2.

Fig. 6. Electrical AC conductivity is evaluated with the
Gagliano-Balseiro formula (16) for ∆ = 1.25; the random-
sample numbers are 16384, 2048 and 960 for L = 3, 4 and
5, respectively.

quantum Monte-Carlo simulation, the (real-)time corre-
lation cannot be computed; the temperature (imaginary
time) correlation function is computed instead. The latter
is free from the delta-function singularities, because the
poles exist only along the real-frequency axis. An analyt-
ical continuation to the real frequency, however, should
be performed in order to estimate the dynamical response
function such as equation (14). This is extremely difficult.)

In Figure 6, we show the random-averaged conductiv-
ity for ∆ = 1.25; the random-sample numbers are 16384,
2048 and 960 for L = 3, 4 and 5, respectively. We see that
the conductivity increases as the frequency is reduced.
In the vicinity of the static point ω ∼ 0, however, the
conductivity drops rapidly due to the reason mentioned
above (finite-size effect). (For comparison, we show the
Fourier-transformed results [17]; σ ≈ 0.055 for L = 3 and
σ ≈ 0.105 for L = 4. These are a bit larger than ours.)
We estimate the DC conductivity as the maximal value
of the AC conductivity. The DC conductivity shows large

Fig. 7. 1/L2 extrapolation of the DC conductivity.

system-size dependence. In Figure 7, we depict the 1/L2

extrapolation of the conductivity. (The power 2 is chosen
for the same reasoning as that in the paper [17].) The
plots align. We stress that the present new data for L = 5
is crucial to confirm the validity of the 1/L2 extrapola-
tion. We obtained the extrapolated conductivity with the
least-square fit as σc = 0.135± 0.01((2e)2/h).

3.3 Dynamical critical exponent

According to the conjecture introduced in Section 2.2,
the dynamical critical exponent is given by z = 2 at
the superfluid-localization transition. This conjecture has
been confirmed numerically [17,20,22] with the help of
the generalized Josephson relation (8) for the superfluid
density. In fact, we demonstrated in Section 3.1 that the
superfluid density is well described in terms of the gen-
eralized Josephson relation and the assumption z = 2. In
this subsection, we utilize the Rieger-Young formula [24]
for the first time in order to estimate z. We think that
the scheme is suitable for the exact-diagonalization simu-
lation, and gives z straightforwardly.

In Figure 8, we show the probability distribution of
the first energy gap ∆E; ∆ = 1.25, L = 5 and 960 ran-
dom samples. According to the Rieger-Young argument,
from the low-energy tail of the distribution, the dynami-
cal critical exponent is extracted: the probability of a cer-
tain energy gap may be proportional to the spatial vol-
ume P ∝ Ld∆Eλ, where the exponent λ describes the
low-energy tail. On the other hand, the finite-size scaling
theory states that any quantities should be expressed in

the form P = P̃ (L/ξr) = P̃ (L/ξ
1/z
τ ); see Section 2.2. With

use of the formula ∆E ∼ 1/ξτ , the distribution turns out
to be a function of L(∆E)1/z . Through collating this fact
with the above form, we obtain the relation λ = d/z,
which is the Rieger-Young relation.

In Figure 8, we see that the low-energy tail is, in fact,
well described by the exponent λ = 1; namely, we obtain
the estimate z = d = 2.
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Fig. 8. Probability distribution of the first energy gap for the
system with ∆ = 1.25 and L = 5.

4 Summary and discussions

We have investigated the two-dimensional hard-core boson
system in the presence of the random chemical potential,
whose Hamiltonian is given by (1). We diagonalized the
Hamiltonian numerically for the system sizes up to L = 5.
The present new data for L = 5 show no unexpected (ir-
regular) behavior in the finite-size-scaling analysis. That
is, the system sizes treated here reach scaling regime.
This was not so certain, and in fact worried about in
the previous study. We observed that the disorder-driven
superfluid-localization transition takes place at the critical
randomness∆c = 1.25±0.1. We estimated the correlation-
length exponent and the dynamical critical exponent as
ν = 2.3 ± 0.6 and z = 2, respectively, with the finite-
size scaling analysis. By means of the Gagliano-Balseiro
method, we computed the dynamical conductivity at the
critical point. Thereby, we obtained the DC conductivity
σc = 0.135± 0.01((2e)2/h).

Our estimate of the critical point is accordant with
that of Runge [17]: by means of the same numerical
method as ours, Runge obtained ∆c ∼ 1.15 through the
analysis of ρs, ∆c ∼ 1.25 through the Binder parameter
(the same as ours) and ∆c ∼ 1.1–1.3 through 〈m2

XY 〉. The
present new simulation for larger system size (L = 5) con-
firmed that the system size is surely in the scaling regime.
On the other hand, by means of the quantum Monte-Carlo
method it has been reported that the transition point
locates at ∆c = 1.43 ± 0.06 [22] and 0.72 [18] (in our
definition). These estimates are based on the generalized
Josephson relation (8) and an assumption of z; the former
assumed z = 2, whereas the latter assumed z = 0.5. We
think that the Binder parameter of the gauge order (12),
which is readily computed with the exact-diagonalization
scheme, shows less correction to the finite-size scaling.

Secondly, we discuss the correlation-length exponent
ν. It should be made clear why our estimate ν = 2.3± 0.6
differs from that of reference [17] (ν = 1.4± 0.3) despite
of the fact that we considered the same model by means
of the same numerical technique except for our extension
to L = 5. Crucial difference might be the criteria utilized

to appreciate the data collapse in the scaling analysis. As
is explained in Appendix, we used a quantitative scheme
which also gives the estimate of the error margin. The
error margin is, however, determined through taking ac-
count of only the statistical error, but not the correction to
finite-size scaling. The latter is hardly appreciable quanti-
tatively. Hence, there is a possibility that the error margin
would be somewhat larger. The estimate of reference [17]
lies a bit outside of our error bar, and, in fact, the scal-
ing plot based on the assumption ν = 1.4 does not show
distinct failure as far as one can see. We believe, however,
that our quantitative criterion would be objective and pos-
sibly less biased, although the present error margin might
be rather large. At least, our data shown in Figure 9 seem
to exclude the conclusion ν ∼ 1. In fact, Chayes et al.
claimed an inequality ν ≥ 2/d, [30,31] which casts doubt
on ν < 1.

Next, we turn to discuss the dynamical critical ex-
ponent. We have used the Rieger-Young relation for the
first time to estimate the dynamical critical exponent. The
analysis showed a clear evidence that z (= d) = 2 holds.
Because the previous estimates founded on the general-
ized Josephson relation (8) indicate the same conclusion
as well, we believe that the prediction z = d is established
fairly definitely in two dimensions.

Finally, we mention about the electrical conductiv-
ity. The present conclusion σc/((2e)

2/h) = 0.135 ± 0.01
is comparable with the estimates 0.17 ± 0.01 [17] and
0.14 ± 0.03 [20]. We stress that the previous exact-
diagonalization data [17] for L = 3 and 4 are rather far
from convergence, and our result for L = 5 reveled that the
result of the system size is about to converge to a certain
thermodynamic-limit value. In fact, as is shown in Fig-
ure 7, our new data L = 5 is vital in order to confirm the
validity of the 1/L2 extrapolation. Quantum Monte-Carlo
method is less efficient in computing dynamical quantity.
(In the quantum Monte-Carlo simulation, the temperature
(imaginary time) correlation rather than the time corre-
lation is evaluated instead. The temperature correlation
is fitted by an analytical function so as to yield the time
correlation through the Wick rotation.) The present cal-
culation with the help of the Gagliano-Balseiro method
compensates the disadvantage.

In the paper [32,33], the authors claim that the limit
ω → 0 at T = 0, which is used in the present paper, fails
to give the DC conductivity relevant to the experimental
transport measurements. According to their theory, the
AC conductivity shows a Drude-like peak with the width
kBT/~. Hence, at T → 0, the peak vanishes to a single
point so as to make the AC conductivity singular (dis-
continuous) at ω = 0. Through taking account of this,
the authors succeeded in explaining the experimentally
observed critical conductivity ≈ (2e)2/h. Our numerical
simulation is rather incapable of observing the features
they proposed. This remained to be solved in future.

Our program is based on the subroutine package TITPACK
ver. 2 coded by professor H. Nishimori. Numerical simula-
tions were performed on VPP/700 56 of the computer center,
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Kyushu university and VPP/500 of the Supercomputer Center,
Institute for Solid State Physics, University of Tokyo.

Appendix: Details of the present scaling
analyses

We explain the details of our finite-size-scaling analyses,
which we managed in Section 3 in order to estimate the
transition point ∆c and the exponent ν. We adjusted these
scaling parameters so that the scaled data shown in Fig-
ure 3 form a universal curve irrespective of the system
sizes. In order to see quantitatively to what extent these
data align, we employ the “local linearity function” S de-
fined by Kawashima and Ito [29]: suppose a set of the data
points {(xi, yi)} with the error-bar {di(= δyi)}, which we
number so that xi < xi+1 may hold for i = 1, 2, · · · , n−1.
For this data set, the local-linearity function is defined as

S =
n−1∑
i=2

w(xi, yi, di|xi−1, yi−1, di−1, xi+1, yi+1, di+1).

(A.1)

The quantity w(xj , yj , dj |xi, yi, di, xk, yk, dk) is given by

w =

(
yj − ȳ

∆

)2

, (A.2)

where

ȳ =
(xk − xj)yi − (xi − xj)yk

xk − xi
(A.3)

and

∆2 = d2
j +

(
xk − xj
xk − xi

di

)2

+

(
xi − xj
xk − xi

dk

)2

. (A.4)

In other words, the numerator yj − ȳ denotes the devia-
tion of the point (xj , yj) from the line passing two points
(xi, yi) and (xk, yk), and the denominator ∆ stands for
the statistical error of (yi− ȳ). And so, w = ((yi− ȳ)/∆)2

shows a degree to what extent these three points align.
The advantage in the above analysis is as follows: in the
conventional least square fitting, we need to assume some
particular fitting function. The assumption which function
we use causes systematic error. Note that in the present
analysis, we do not have to assume any fitting functions.

The scaling parameters are determined so as to mini-
mize the local-linearity function. The error margin of the
scaling parameter is hard to estimate. It is concerned with
both the statistical error and the correction to the finite
size scaling. The former error can be estimated through
considering the statistical error of the function S. This
function has a relative error of the order 1/

√
n− 2. (The

local-linearity function is of the order (n−2), and the error
is given by

√
n− 2.) The correction to the finite-size scal-

ing, on the contrary, is quite difficult to determine. Here,
we consider only the statistical error in order to estimate

Fig. 9. Local linearity function is plotted with varying the
scaling parameter ν. From this plot, we estimated the exponent
as ν = 2.3± 0.6.

the error margins of the scaling parameters. As the num-
ber of the data points n is increased, the statistical error
of S is reduced. The corrections to the finite-size scaling
might increase instead. In the present analyses, we used
twenty data in the vicinity of the transition point ∆c. An
example of the plot S is shown in Figure 9. We observe the
minimum at ν = 2.0. Taking into account of the statistical
error, we estimated the critical exponent as ν = 2.3± 0.6.
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